Температура газа перед турбиной ал 31 ф. Фнпц "ммпп "салют"

Двигатель двухконтурный, двухвальный, со смешением потоков внутреннего и наружного контуров за турбиной, с общим для двух контуров форсажной камерой и регулируемым сверхзвуковым всережимным реактивным соплом.

Двигатель имеет модульную конструкцию, обеспечивающую высокую технологичность сборки и позволяющую производить замену модулей при минимальном объеме регулировок. В число модулей входят:

компрессор низкого давления;

газогенератор (включает компрессор высокого давления, основную камеру сгорания, воздухо-воздушный теплообменник, турбину высокого давления, турбину низкого давления, смеситель);

фронтовое устройство форсажной камеры сгорания;

реактивное сопло с корпусом форсажной камеры сгорания;

коробка приводов двигательных агрегатов с агрегатами.

Компрессор двигателя - осевой, двухкаскадный, тринадцатиступенчатый. В состав компрессора входят:

четырехступенчатый компрессор низкого давления с регулируемым входным направляющим аппаратом;

девятиступенчатый компрессор высокого давления с тремя регулируемыми направляющими аппаратами - входным и первых двух ступеней;

промежуточный корпус.

Основная камера сгорания - кольцевая.

В состав ОКС входят корпус с диффузором и жаровая труба.

Топливо поступает в ОКС через двадцать восемь двухкаскадных форсунки. Воспламенение топливовоздушной смеси при запуске двигателя осуществляется электрической системой зажигания.

Турбина двигателя - осевая, двухступенчатая. В состав узла турбины входят: одноступенчатая турбина высокого давления с охлаждаемыми воздухом диском, сопловыми и рабочими лопатками, а также деталями наружного и внутреннего корпусов; одноступенчатая турбина высокого давления с охлаждаемыми воздухом диском и сопловыми лопатками.

Форсажная камера сгорания - общая для двух контуров, со смешением потоков на входе во фронтовое устройство. В состав форсажной камеры входят корпус смесителя, смеситель и фронтовое устройство.

Регулируемое реактивное сопло с корпусом форсажной камеры - сверхзвуковое, всережимное, с внешними створками. В состав РС входят:

створки сужающейся части;

надстворки расширяющейся части;

внешние створки;

проставки;

упругие элементы; стяжное устройство с пневмоприводом.

РС смонтировано на корпусе ФК. Внешние створки обеспечивают плавное обтекание хвостовой части самолета, уменьшая ее сопротивление. Воспламенение топлива в форсажной камере обеспечивает «огневая дорожка».

Воздухо-воздушный теплообменник предназначен для снижения температуры охлаждающего турбину воздуха. В состав воздухо-воздушного теплообменника входят корпус, трубчатые теплообменные модули и аппарат отключения охлаждения.

Наружный контур состоит из двух корпусов - переднего (разъемного) и заднего.

Узел приводов вспомогательных устройств состоит:

из центральной конической передачи;

из коробки приводов двигательных агрегатов (зубчатые передачи которой приводятся во вращение ротором высокого давления через ЦКП);

из редуктора датчиков РНД (зубчатые передачи которого приводятся во вращение ротором высокого давления через привод редуктора датчиков РНД).

От КДА через гибкий вал осуществляется привод самолетных агрегатов, установленных на ВКА.

Масляная система - автономная, циркуляционная, с двумя топливомасляными теплообменниками. Система обеспечивает подвод масла к узлам трения, отвод его и охлаждение, суфлирование масляных полостей и наддув предмаслянных полостей.

Топливная система - гидромеханическая, с применением электронного комплексного регулятора двигателя.

Система противообледенения двигателя предназначена для обогрева поверхностей ВНА и кока компрессора горячим воздухом из КВД в условиях возможного обледенения.

Система управления охлаждением турбины обеспечивает подачу воздуха от КВД на детали турбины.

Система запуска обеспечивает:

запуск двигателя на земле и в полете;

воспламенение топлива при включении ФК;

прокрутку и ложный запуск двигателя.

Для запуска двигателя на земле служит газотурбинный двигатель, установленный на ВКА.

На двигателе установлены датчики и приемники систем контроля, предназначенные для информации о работе двигателя, представляемой визуально и в записи на носители информации бортовых и наземных регистрирующих систем.

Выносная коробка агрегатов с размещенными на ней газотурбинным двигателем, самолетным генератором и гидронасосами установлена в фюзеляже самолета и соединена с КДА гибким валом. ВКА служит для передачи вращательного движения:

на агрегаты самолета от КДА при работе двигателя;

на РВД и агрегаты самолета от ГТДЭ при запуске двигателя на земле.

Компрессор - осевой, двухкаскадный, с регулируемыми направляющими аппаратами.

В узел входят компрессор низкого давления (КНД), компрессор высокого давления (КВД) и промежуточный корпус.

Управление механизацией компрессора осуществляют система управления поворотными закрылками ВНА КНД и система ликвидации помпажа.

Компрессор низкого давления предназначен для сжатия воздуха, поступающего в наружный и внутренний контуры двигателя.

КНД состоит из ротора 2 и статора 3.

В состав статора входят: входной направляющий аппарат; кок; передняя опора; корпус первой, второй, третьей и четвертой ступеней; направляющие аппараты первой, второй, третьей и четвертой ступеней.

Входной направляющий аппарат - титановый, является силовым элементом двигателя.

В нем смонтированы: передняя опора КНД; откачивающий маслонасос; кок.

В состав ВНА входят: наружное кольцо; ступица; стойки.

Обечайка коллектора с наружным кольцом образует полость, в которую через отверстие в бобышке подается горячий воздух из-за седьмой ступени КВД (системы противообледенения двигателя) к стойкам и к коку.

Стойки образуют единый аэродинамический профиль с поворотными закрылками. Поворот закрылков осуществляется по команде системы управления ВНА КНД рычагами через приводное кольцо с десятью расположенными по окружности фиксаторами.

Через семь стоек проходят трубопроводы: суфлирования масляной полости; подвода масла; откачки масла; суфлирование предмасляной полости; слива масла.

Кок состоит из двух обечаек, образующих полость, в которую поступает горячий воздух из-за седьмой ступени КВД.

Передняя опора ротора силовой элемент двигателя, закреплена на заднем фланце ступицы ВНА. В ее состав входят: корпус роликоподшипников; роликоподшипник; узел масляного уплотнения; крышки лабиринтного уплотнения.

Корпус роликоподшипника состоит из наружного и внутреннего корпусов. Упруго-подвижная передняя часть корпуса связана с неподвижным фланцем ступицы пятьюдесятью упругими перемычками.

Упругость корпуса, наличие масляной пленки в полости расположения упругого кольца гасят колебания ротора.

Узел масляного уплотнения предотвращает утечки масла в проточную часть компрессора и воздуха - из проточной части в масляные полости.

Корпуса первой, второй, третьей, и четвертой ступеней выполнены в виде кольцевых оболочек. Полость Г над рабочими лопатками сообщается с проточной частью компрессора через прорези Б и образует щелевой перепуск, расширяющий диапазон режимов устойчивой работы компрессора. В корпусах имеются окна Е для осмотра и текущего ремонта лопаток компрессора. Пробка имеет прямоугольный фланец и резьбовое отверстие для ключа. Соединение корпусов - фланцевое. Передний фланец корпуса соединен с ВНА, задний фланец корпуса - с промежуточным корпусом.

Направляющие аппараты первой, второй и третьей ступеней состоят соответственно из лопаток с наружными и внутренними полками, а также внутренних полуколец, являющихся неподвижными элементами воздушных лабиринтных уплотнений; подвижными элементами служат гребешки на барабане ротора.

Ротор - барабанно-дисковой конструкции, опирается передней цапфой на роликовый подшипник, задней цапфой - на шариковый подшипник. Привод откачивающего маслонасоса осуществлен от ротора КНД.

В диск первой ступени установлены 37 рабочих лопаток, в диск второй ступени - 45, в диск третьей ступени - 57 и в диск четвертой ступени - 43. Болты выполняют функцию балансировочных грузов, для чего имеются отверстия А для подвода воздуха из проточной части компрессора во внутреннюю полость ротора для разгрузки от осевых сил.

Промежуточный корпус - основной элемент силовой схемы двигателя.

В промежуточном корпусе воздух, поступающий из КНД, делится на два потока: наружного и внутреннего контура.

В промежуточном корпусе установлены: выходной НА КНД; задняя опора ротора КНД; передняя опора ротора КВД; центральная коническая передача.

Промежуточный корпус - титановый, состоит из обода и опорного обода, соединенных стойками. К стойкам приварено разделительное кольцо.

Обод имеет фланцы: к переднему крепится выходной НА КНД и статор КНД, к заднему - передний корпус наружного контура. В пазах обода установлены стойки.

На наружной поверхности обода размещены: два узла крепления двигателя к самолету; кронштейны привода механизма поворота НА, бобышки крепления клапана переключения наддува (КПН) и трубопроводы наддува полостей подпора масляных уплотнений опор КНД и КВД, бобышка для крепления трубопроводов подвода и откачки масла, бобышка и две подвески крепления КДА, бобышка крепления редуктора датчиков РНД, бобышка крепления трубопровода суфлирования масляной полости.

Стойки промежуточного корпуса - полые. Через стойку проходит вертикальная рессора, соединяющая ЦКП с КДА, и осуществляется суфлирование масляной полости промежуточного корпуса. Полости стоек служат для суфлирования предмасляных полостей задней опоры КНД и передней опоры КВД.

Внутри стойки проходят: трубопровод подвода масла к подшипникам задней опоры ротора КНД, передней опоры ротора КВД и к подшипникам ЦКП, трубопровод откачки масла из полости промежуточного корпуса. Через стойку проходит рессора привода маслонасоса. Полости стоек служат для наддува уплотнений опор КВД и КНД. Через стойку проходит рессора привода редуктора датчиков РНД.

Разделительное кольцо имеет двенадцать вырезов под стойки корпуса.

Внутренним фланцем кольцо присоединено к статору КВД, наружным - к экрану наружного контура.

Выходной НА КНД состоит из наружного кольца, двух рядов лопаток и внутреннего кольца. Фланцами на наружном и внутреннем кольцах выходной НА крепится к промежуточному корпусу.

Задняя опора ротора КНД воспринимает суммарную осевую нагрузку от роторов КНД и ТНД, а так же радиальную нагрузку от ротора КНД. В ее состав входят: корпус подшипника, шариковый подшипник, радиально-контактное масляное уплотнение, крышки лабиринтного уплотнения и вал КНД. В задней опоре смонтирован привод редуктора датчиков РНД.

Суфлирование масляной полости осуществлено через трубопровод и втулку. Подвод воздуха в полости наддува масляных уплотнений производится через два трубопровода.

Вал имеет два ряда внутренних шлиц: передний - для зацепления со шлицами задней цапфы ротора КНД; задний - для соединения роторов КНД и ТНД через рессору. Роторы КНД и ТНД соединены стяжной трубой. На валу закреплена гайкой ведущая шестерня привода редуктора датчиков РНД.

Передняя опора ротора КВД воспринимает суммарную осевую и радиальную нагрузки от ротора КВД и РНД.

В переднюю опору входят: корпус подшипника; шариковый подшипник; радиально-контактное уплотнение.

Демпфирование шарикоподшипника обеспечено упругостью корпуса, деформацией изгиба упругого кольца и сопротивлением колебаниям ротора, которое возникает от выдавливания масляной пленки из полости, в которой размещено упругое кольцо.

Компрессор высокого давления сжимает воздух, поступающий во внутренний контур двигателя.

В состав КВД входят статор и ротор.

Статор КВД включает: корпус ВНА и первой ступени; корпус второй и третьей ступени; задний корпус; ВНА; девять НА.

Передним фланцем статор соединен с промежуточным корпусом, а задним - с корпусом ОКС. В корпусах статора имеются окна осмотра лопаток КВД.

Корпус ВНА и первой ступени выполнен с двумя фланцами и продольным разъемом. В корпусе смонтированы лопатки ВНА и НА первой ступени.

Корпус второй и третьей ступеней - с двумя фланцами и продольным разъемом. В корпусе смонтированы лопатки НА.

Задний корпус - с двумя фланцами и продольным разъемом. К корпусу приварена обечайка коллектора, образующая с ним кольцевую полость отбора воздуха из-за седьмой ступени.

Лопатки ВНА - поворотные, двухопорные. Поворотные лопатки НА первой и второй ступеней - консольные. Поворот лопаток ВНА, НА первой и второй ступеней по сигналу системы управления осуществляется гидроцилиндрами через приводные кольца и систему рычагов.

Направляющие аппараты с третьей по восьмую ступени - нерегулируемые. Через прорези в наружном кольце в наружном кольце НА седьмой ступени и отверстия в корпусе производится отбор воздуха для нужд самолета, системы противообледенения двигателя и системы наддува масляных уплотнений опор двигателя. Выходной НА КВД выполнен двухрядным, фланцем на наружном кольце крепится к корпусу ОКС.

Ротор включает в себя: диски с рабочими лопатками; вал; переднюю цапфу; лабиринт.

Барабан ротора состоит: из двух секций дисков; первая секция включает диски первой, второй и третьей ступеней; вторая секция - диски четвертой, пятой и шестой ступеней; из трех дисков седьмой, восьмой и девятой ступеней; первая ступень имеет 47 лопаток, вторая - 62, третья - 73, четвертая - 94, пятая - 99, шестая - 101, седьмая - 103, восьмая - 105 и девятая - 107 лопаток.

Вал соединяет роторы КВД и ТВД и передает крутильный момент от ротора ТВД.

Передней цапфой ротор КВД опирается на шарикоподшипник, смонтированный в промежуточном корпусе.

На цапфе установлены: лабиринт, предотвращающий утечку воздуха из полости наддува в предмасляную полость передней опоры ротора КВД; лабиринт, предотвращающий утечку воздуха из полости наддува передней опоры в проточную часть КВД.

Крышка уплотнения предотвращает утечку воздуха из предмасляной полости межвального уплотнения в полость наддува передней опоры КВД.

Лабиринт предназначен для предотвращения утечек воздуха на тракте компрессора в разгрузочную полость КВД.

Основная камера сгорания - кольцевая, состоит из наружного корпуса, внутреннего корпуса и жаровой трубы. Корпуса ОКС и теплообменника образуют со стенками жаровой трубы кольцевые каналы, по которым воздух из КВД поступает в жаровую трубу. Топливо в ОКС подается топливным коллектором через двадцать восемь форсунок. Воспламенение топлива в ОКС осуществляется системой зажигания. Топливный коллектор и запальные устройства размещены на корпусе ОКС.

Корпус- элемент силовой схемы двигателя. Передняя часть корпуса образует кольцевой диффузор, в котором снижается скорость воздуха, поступающего в ОКС из компрессора.

Корпус состоит из наружного и внутреннего корпусов, соединенных четырнадцатью полыми стойками. На семи стойках имеются кронштейны для крепления жаровой трубы и топливного коллектора к корпусу ОКС. На переднем фланце внутреннего корпуса укреплены крышки лабиринтного уплотнения разгрузочной полости. Задний фланец внутреннего корпуса крепится к корпусу соплового аппарата ТВД. Передний фланец наружного корпуса крепится к фланцу корпуса КВД, а задний фланец - к переднему фланцу корпуса теплообменника.

Жаровая труба предназначена для сжигания топливовоздушной смеси и формирования поля температур газа на входе в турбину.

Жаровая труба состоит их набора профилированных секций, соединенных между собой сваркой, или профилированных точеных секций.

Фронтовая часть жаровой трубы состоит из кольцевой обечайки с двадцатью восемью цилиндрическими камерами смешения и лопаточных завихрителей, подвижно установленных на входе в камеры смешения.

Для создания горючей топливовоздушной смеси во фронтовой части жаровой трубы имеется ряд отверстий подвода воздуха - воздухозаборников. Камера смешения служит для подготовки топливовоздушной смеси, поступающей в жаровую трубу. Формирование поля температур на выходе из камеры сгорания осуществляется воздухом, поступающим через четыре ряда отверстий, расположенных на смесительной части жаровой трубы. Для охлаждения стенок жаровой трубы на ее внутренней и наружной оболочках имеются кольцевые щели, в которые через отверстия поступает воздух, образующий заградительную пелену вдоль стенок. На внутреннюю поверхность жаровой трубы нанесено жаростойкое покрытие.

Для компенсации перемещений от тепловых воздействий жаровая труба и топливный коллектор крепится к кронштейнам стоек радиальными штифтами. Компенсация взаимных перемещений жаровой трубы и СА ТВД осуществляется с помощью телескопического соединения по фланцам.

Узел турбины включает последовательно расположенные одноступенчатые осевые турбины высокого и низкого давления, а также опору.

Турбина высокого давления приводит во вращение компрессор высокого давления и агрегаты, установленные на коробке приводов двигательных агрегатов и на выносной коробке агрегатов.

Турбина низкого давления приводит во вращение компрессор низкого давления.

Каждая из турбин включает ротор и сопловой аппарат.

Опора узла турбины - элемент силовой схемы двигателя.

Радиальные усилия от ротора ТВД передаются на опору через межроторный подшипник, вал ТНД и расположенный в опоре подшипник ротора ТВД. В узел входят корпус опоры и корпус подшипника.

Сопловой аппарат ТВД кольцом соединен с фланцами обода СА ТНД, корпуса теплообменника и телескопическим соединением через кольцо - с жаровой трубой ОКС. наружное кольцо СА ТВД имеет отверстия для подвода вторичного воздуха из ОКС и ВВТ на охлаждение соплового аппарата и рабочих лопаток ТВД. Внутреннее кольцо СА ТВД соединено фланцем с аппаратом закрутки 3 и с внутренним корпусом ОКС.

Внутреннее кольцо через кольцо телескопически соединено с жаровой трубой ОКС, кольца и образуют канал подвода вторичного воздуха из ОКС на охлаждение внутренних полок сопловых лопаток. Сопловой аппарат имеет сорок две лопатки, объединенные в четырнадцать литых трехлопаточных блоков, чем достигается уменьшение перетечек газа.

Сопловая лопатка - пустотелая, охлаждаемая. Перо, наружная и внутренняя полки образуют с пером и полками соседних лопаток проточную часть. Внутренняя полость сопловой лопатки разделена перегородкой. На входной кромке лопатки имеется перфорация, обеспечивающая пленочное охлаждение наружной поверхности пера. В передней полости размещен дефлектор, а в задней - дефлектор. Дефлекторы имеют отверстия для охлаждения воздуха.

Ротор ТВД состоит из: диска с 90 лопатками рабочего колеса; цапфы с лабиринтами и маслоуплотнительными кольцами.

В диске выполнены отверстия для подвода охлаждающего воздуха к рабочим лопаткам.

Рабочая лопатка ТВД - полая, охлаждаемая. Во внутренней полости ее для организации процесса охлаждения имеются продольный канал с отверстиями в перегородке и ребра. Хвостовик лопатки «елочного типа». В хвостовике цапфы 36 размещены масляное уплотнение и обойма роликового подшипника, являющегося задней опорой ротора высокого давления.

Сопловой аппарат ТНД соединен с корпусом теплообменника и наружным кольцом 6 турбины высокого давления, а также с корпусом опоры турбины.

Сопловой аппарат ТНД имеет тридцать три лопатки, спаянные в одиннадцать трехлопаточных блоков для уменьшения перетечек газа.

Сопловая лопатка - литая, пустотелая, охлаждаемая. Перо, наружная и внутренняя полки образуют с пером и полками соседней лопатки проточную часть соплового аппарата ТНД. Во внутренней полости пера лопатки размещен перфорированный дефлектор. На внутренней поверхности пера имеются поперечные ребра и турбулизирующие штырьки для организации направленного течения охлаждающего воздуха. Диафрагма служит для разделения полостей между рабочими колесами ТВД и ТНД.

Ротор ТНД включает: диск с 90 рабочими лопатками; цапфу; вал; напорный диск.

Диск имеет пазы для крепления рабочих лопаток и наклонные отверстия для подвода охлаждающего воздуха к ним.

Рабочая лопатка ТНД - литая, полая, охлаждаемая. На периферийной части имеет бандажную полку с гребешком лабиринтного уплотнения, обеспечивающим уменьшение радиального зазора между ротором и сопловым аппаратом ТНД.

Цапфа имеет на передней части внутренние шлицы, передающие крутящий момент на вал. На наружной поверхности передней части цапфы установлена внутренняя обойма роликового подшипника (на который опирается ротор высокого давления), лабиринт и набор уплотнительных колец, образующих переднее уплотнение масляной полости задней опоры ТВД.

На цилиндрическом поясе в передней части цапфы имеется набор уплотнительных колец, образующих уплотнение масляной полости между роторами турбин высокого и низкого давлений. На цилиндрическом поясе в задней части цапфы установлен набор уплотнительных колец, образующих уплотнение масляной полости опоры ТНД.

Вал состоит из трех частей, соединенных штифтами. В задней части вала имеется привод откачивающего маслонасоса опоры турбины. В передней части вала имеются шлицы, передающие крутящий момент на ротор КНД через рессору.

Напорный диск обеспечивает увеличение давления охлаждающего воздуха на входе в рабочие лопатки ТНД.

В состав опоры турбины входят корпус опоры и корпус подшипника. Корпус состоит из наружного корпуса и внутренних колец, соединенных силовыми стойками и образующих силовую схему опоры турбины. В состав опоры входят также экран.

Внутри силовых стоек размещены трубопроводы: подвода и откачки масла; суфлирования масляных полостей; слива масла.

Через полости силовых стоек подводится воздух на охлаждение ТНД и отводится воздух из предмасляной полости. Силовые стойки 18 закрыты снаружи обтекателями. Экран с обтекателями образует проточную часть газовоздушного тракта за ТНД.

Корпус подшипника и крышки и образуют масляную полость опоры турбины. Масляная полость термоизолирована. На корпусе подшипника установлены маслооткачивающий насос и масляный коллектор. Между наружной обоймой роликоподшипника ротора ТНД и корпусом подшипника размещен упругомасляный демпфер.

В состав форсажной камеры сгорания входят: смеситель; фронтовое устройство; корпус с теплозащитным экраном; кок-стекатель.

Смеситель - элемент силовой схемы двигателя, осуществляет связь корпусов внутреннего и наружного контуров двигателя. Смеситель состоит из корпуса и смесителя.

Корпус передним фланцем прикреплен к корпусу наружного контура. К заднему фланцу прикреплено фронтовое устройство.

На шпангоуте установлены: восемь термопар; центробежная форсунка системы «огневой дорожки» ФК; трубопровод слива топлива из сливного бачка двигателя в проточную часть ФК; приемник полного давления Р04.

Смеситель перемешивает потоки газа внутреннего контура и воздуха наружного контура перед фронтовым устройством.

Смеситель передним фланцем прикреплен к корпусу опоры турбины, а кольцом подвижно опирается на корпус. Подвижность смесителя обеспечивает осевую компенсацию внутреннего контура относительно наружного.

Смеситель имеет двадцать два кармана

Фронтовое устройство предназначено для организации устойчивого горения топлива в форсажной камере.

Фронтовое устройство состоит из: корпуса с двухсекционным теплозащитным экраном; системы стабилизации пламени; топливных коллекторов.

Корпус - кольцевая обечайка с фланцами.

В корпус вварены: силовой пояс с узлами крепления двигателя к самолету; два фланца для установки ионизационных датчиков пламени; пять втулок для выводов топливных коллекторов; одиннадцать фланцев для крепления тягами стабилизаторов форсажной камеры с топливными коллекторами; меры с топливными коллекторами; патрубок для подсоединения аварийного слива топлива; фланец для установки приемника полного давления Р04.

Теплозащитный экран - двухсекционный. Экран с обечайкой корпуса образуют кольцевой канал подвода воздуха из наружного контура на охлаждение форсажной камеры и реактивного сопла. Первая секция имеет на входе двадцать два гофра, а на выходе - сорок четыре.

Вторая секция экрана имеет сорок четыре гофра и одновременно является антивибрационным элементом.

Система стабилизации пламени состоит из кольцевой форсажной камеры, двух V-образных стабилизаторов - большого и малого, а также двадцати двух стоек и соответственно большого и малого стабилизаторов. Форсажная камера - V-образный кольцевой стабилизатор, внутри которого расположен карбюратор, образованный одиннадцатью трубами, перфорированными отверстиями, с заборниками на входе. В каждую трубку поступает топливо от пускового коллектора и газ из тракта. Топливо и газ проходит через карбюратор, и поступают во внутреннюю полость форсажной камеры.

Большой и малый стабилизаторы закреплены на форсажной камере каждый одиннадцатью стойками, которые одновременно выполняют функции радиальных стабилизаторов.

Форсажная камера закреплена в корпусе одиннадцатью тягами.

На внутренней полке профиля малого стабилизатора имеется одиннадцать V-образных радиальных стабилизаторов.

Топливные коллекторы расположены перед форсажной камерой и закреплены на ней серьгами, которые обеспечивают свободу перемещения коллекторов при нагреве.

Коллектор, постоянно работающий во всем диапазоне форсированных режимов двигателя, является пусковым. Он имеет одиннадцать струйных форсунок, питающих топливом карбюратор, и тридцать три отверстия в кольце, направленных на отражатели, питающих форсажную камеру.

Каждый из коллекторов имеет по двадцать две форсунки. У коллекторов форсунки установлены на наружном диаметре колец, либо на внутреннем.

Коллекторы имеют по экранов для защиты внутренних полостей кольцевых труб от нагарообразования.

Корпус ФК состоит из корпуса и теплозащитного экрана. На конической части корпуса расположен шпангоут для крепления элементов реактивного сопла. В нижней части установлен дренажный клапан для слива топлива. Теплозащитный экран состоит из четырех секций, каждая из которых имеет по гофра и перфорирована отверстиями.

Кок-стекатель уменьшает потери энергии при выходе газа из турбины. Перфорация на коке-стекателе служит для уменьшения пульсационного горения в форсажной камере.

Поток газа и воздуха из смесителя поступает в полость фронтового устройства. Часть воздуха попадает в полость, образованную экранами и стенками корпусов фронтового устройства и корпуса ФК, и охлаждает корпуса и реактивное сопло.

В системе стабилизации пламени фронтового устройства создается обширная зона обратных токов, что обеспечивает полноту сгорания топлива, надежный запуск и устойчивость работы ФК в широком диапазоне режимов.

Включение ФК осуществляется системой запуска при перемещении РУД в диапазон форсированных режимов.

Пламя «огневой дорожки», достигнув зоны обратных токов форсажной камеры, воспламеняет воздушную смесь, подготовленную форсажной камерой и пусковым коллектором. При этом расход топлива через пусковой коллектор составляет приблизительно 10% от суммарного расхода всех коллекторов. После воспламенения топлива в ФК по сигналу ионизационных датчиков пламени снимается блокировка в РСФ, соответствующая его работе на минимальном форсированном режиме.

Топливо через форсунки топливных коллекторов 3, 4, 5, 6 первого и второго каскадов (или только первого) подается в проточную часть фронтового устройства и вместе с потоком газа поступает в зону горения ФК. Количество подаваемого топлива определяется регулятором сопла и форсажа в зависимости от степени форсирования двигателя.

Регулируемое реактивное сопло (РС) - сверхзвуковое, всережимное, с внешними створками.

В состав РС входят: дозвуковое сужающееся сопло с приводом и синхронизирующими механизмами регулирования площади критического сечения; сверхзвуковая часть РС с механизмами привода, синхронизации и регулирования площади среза, осуществляемой через внешние створки и дозвуковое сопло; внешние створки с упругими элементами, являющиеся подвижной частью фюзеляжа самолета.

Шестнадцать створок с уплотняющими их шестнадцатью проставками образуют сужающееся дозвуковое сопло.

Каждая створка двумя проушинами подвижно закреплена в корпусе шарнира на заднем фланце корпуса форсажной камеры. Корпус шарнира неподвижно закреплен на заднем фланце корпуса ФК.

Каждая проставка подвижно закреплена ограничителем на двух соседних створках, а передняя часть проставок свободно опирается штифтами на те же соседние створки.

Штифты неподвижно закреплены на проставках.

Шестнадцать гидроцилиндров с шестнадцатью рычагами и с тридцатью двумя тягами образуют синхронизирующий привод створок.

Рабочим телом гидроцилиндров является топливо двигателя.

Гидроцилиндры и рычаги подвижно закреплены на траверсах. Траверса неподвижно закреплена на заднем фланце корпуса ФК и подвижно - на шпангоуте корпуса ФК.

Штоки гидроцилиндров подвижно закреплены на рычагах, а каждый рычаг тягами подвижно связан с двумя соседними створками, что обеспечивает синхронное перемещение створок.

Сверхзвуковая часть РС с внешними створками и упругими элементами.

Шестнадцать надстворок с уплотняющими проставками образуют расширяющуюся, сверхзвуковую часть РС.

Каждая надстворка подвижно соединена со створкой, а проставки надстворок подвижно соединены с проставками створок. Каждая проставка подвижно закреплена на двух соседних надстворках тремя ограничителями, которые подвижно закреплены на проставках. Ограничитель, расположенный у заднего торца проставки, обеспечивает минимальное перекрытие боковых кромок надстворок проставками при максимальной площади среза РС.

Шестнадцать внешних надстворок с уплотняющими их шестнадцатью проставками является продолжением подвижной части фюзеляжа самолета.

Внешние створки передней частью подвижно закреплены на траверсах, а задний - кронштейнами с двумя роликами введены в направляющие пазы надстворок.

Каждая проставка передней частью подвижно закреплена на двух соседних внешних створках, а задней - свободно опирается на те же соседние внешние створки.

Ограничители, неподвижно закрепленные на внешних створках с внутренней стороны на кронштейне, не допускают перемещение проставок в окружном направлении.

Средней частью проставка входит в пазы соседних нижних створок. Пазы образованы неподвижно закрепленными ограничителями и днищем.

Шестнадцать кронштейнов с тридцатью двумя тягами образуют синхронизирующий механизм сверхзвуковой части РС и внешних створок.

Кронштейны подвижно закреплены на рычагах привода дозвукового сопла. Каждый кронштейн тягами подвижно связан с двумя соседними створками, чем обеспечивается синхронное перемещение сверхзвуковой расширяющейся части через внешние створки.

Шестнадцать пневмоцилиндров образуют механизм регулировки площади среза РС.

Пневмоцилиндры попарно, крышка с крышкой, шток со штоком, подвижно закреплены в окружном направлении с внутренней стороны в средней части на кронштейнах каждой внешней створки и образуют «браслет».

Шестнадцать регулируемых ограничителей телескопического типа ограничивают предельную площадь среза РС. Ограничители подвижно закреплены с внутренней стороны на кронштейнах в конце внешней створки в окружном направлении и образуют «браслет».

Шестнадцать регулируемых упоров телескопического типа образуют механизм регулирования минимальной и максимальной площадей среза РС.

Каждый упор подвижно закреплен гильзой на траверсе и штоком - на кронштейне.

Тридцать два упругих элемента обеспечивают плавный переход от внешних створок с проставками РС к фюзеляжу самолета. Упругие элементы закреплены на кольце, которое шестнадцатью тягами подвижно закреплено на траверсах.

Каждый упругий элемент крепится двумя винтами.

Работа сопла заключается в изменении площадей критического сечения и среза в зависимости от режима работы двигателя.

Площадь критического сечения сопла определяется положением створок.

Площадь среза определяется положением надстворок и при постоянной площади критического сечения сопла изменяется в пределах изменения длины телескопических упоров.

Оптимизация площади среза сопла в пределах хода телескопических упоров при постоянной площади критического сечения обеспечивается автоматически под воздействием газовых и аэродинамических сил, действующих на надстворки и внешние створки, а также под воздействием сжимающих сил пневмоцилиндров.

Пневмоцилиндры - одностороннего действия, постоянно работающие на сжатие сверхзвуковой части РС от воздуха с давлением Р2. При максимальной длине телескопического упора площадь среза сопла минимальна.

Наружный контур - внешняя оболочка двигателя, образует совместно с корпусами КВД, ОКС, ВВТ и турбины канал для перепуска части воздуха, сжатого в КНД, к смесителю ФК.

Наружный контур состоит из двух профилированных корпусов - переднего и заднего. Корпуса входят в силовую схему двигателя.

Передний корпус имеет продольный разъем для обеспечения доступа к КВД, ОКС и два поперечных силовых шпангоута.

На корпусах наружного контура имеются фланцы систем отбора воздуха, крепления запальных устройств, окон осмотра двигателя, а также бобышки для крепления агрегатов и коммуникаций.

Фланцы систем отбора воздуха на переднем корпусе соединены с фланцами на корпусе КВД двухшарнирными элементами, обеспечивающими возможность взаимного перемещения корпусов.

Поток воздуха, протекающий через канал наружного контура, поступает в смеситель ФК.

Часть воздуха наружного контура используется для охлаждения деталей ФК и РС. В канале наружного контура охлаждаются трубчатые модули ВВТ.

Система приводов вспомогательных устройств предназначена для передачи вращательного движения от ротора двигателя к агрегатам и ВКА, а также для размещения агрегатов и датчиков.

Система состоит из центральной конической передачи, КДА, редуктора датчиков.

Основная силовая передача идет от: вала ведущей шестерни ЦКП через конические шестерни, вертикальную рессору и КДА и далее через гибкий вал на ВКА; а при запуске - от ВКА на ЦКП и вал РВД двигателя; вала ведущей шестерни ЦКП через ряд шестерен в ЦКП на откачивающие насосы; вала КНД через ряд шестерен, малую рессору к редуктору датчиков.

Центральная коническая передача размещена на заднем фланце опорного обода промежуточного корпуса компрессора.

КДА передает вращательное движение от ЦКП на агрегаты, обслуживающие системы двигателя, и служит для крепления агрегатов.

На КДА установлены следующие агрегаты: центробежный суфлер; топливный насос высокого давления; топливоподкачивающий центробежный насос; маслоагрегат; насос-регулятор; форсажный насос.

Коробка приводов двигательных агрегатов установлена на промежуточном корпусе компрессора. На коробке приводов установлены два кронштейна крепления коробки к промежуточному корпусу.

Подвеска КДА на пальцах позволяет ей при изменениях температуры перемещаться в горизонтальном направлении. Перемещение КДА в вертикальном направлении осуществляется по цилиндрическому пояску опоры на крышке КДА, телескопически вставленной в опору промежуточного корпуса компрессора.

КДА представляет коробку передач, состоящую из цилиндрических и одной пары конических шестерен, размещенных в корпусе. Между корпусом и крышкой установлена паронитовая прокладка.

В нижней части коробки имеются отверстия для откачки масла. Выходной вал к ВКА имеет свободу осевого перемещения относительно шестерни. Этим компенсируется отклонение линейных размеров гибкого вала и расстояния между ВКА и КДА, а также линейные температурные расширения.

Редуктор датчиков предназначен для размещения индукционного и трех частотных датчиков частоты вращения. Редуктор имеет гнездо для ручной прокрутки РНД. Система смазки редуктора - автономная.

Редуктор крепится шпильками к бобышке на промежуточном корпусе компрессора.

Редуктор состоит из двух пар цилиндрических шестерен, размещенных в корпусе.

На валике-шестерне имеется индуктор - диск с торцовыми выступами. Против выступов индуктора размещены три датчика частоты вращения. На валике-шестерне установлен индукционный датчик частоты вращения.

Масляная система предназначена для охлаждения и смазки подшипников из зубчатых передач двигателя.

Масляная система состоит из следующих систем: нагнетания; откачки;

суфлирования масляных полостей; наддува опор двигателя.

Система нагнетания предназначена для подачи масла под давлением к узлам и деталям двигателя.

Система нагнетания включает: нагнетающий насос маслоагрегата; перепускной клапан маслоагрегата; маслофильтр; топливомасляные теплообменники; обратный клапан; клапан переключения; трубопроводы; форсунки.

Нагнетающий насос маслоагрегата предназначен для подачи масла под давлением в систему нагнетания. Нагнетающий насос - центробежно-шестеренного типа, объединен в одном маслоагрегате с перепускным клапаном и насосом, откачивающим масло из КДА.

Для предотвращения утечки масла из полости нагнетающего насоса в полость откачивающего насоса при работе двигателя и перетекания масла на стоянке из маслобака в двигатель на валах установлены уплотнительные манжеты. Давление масла на выходе из нагнетающего насоса регулируется перепускным клапаном маслоагрегата. Маслоагрегат установлен на КДА.

Перепускной клапан маслоагрегата предназначен для поддержания заданного давления на режимах n2 85%.

Регулировка клапана основного режима работы осуществляется при помощи упора.

Тонкость фильтрации маслофильтра не хуже 70 мкм.

Маслофильтр предназначен для очистки масла, поступающего в систему нагнетания, а также для контровки состояния деталей. Маслофильтр состоит из набора сетчатых фильтрующих секций, с монтированных на каркасе с крышкой. Каркас имеет продольные сквозные пазы для выхода масла. В крышке расположено уплотнительное кольцо. Корпус маслофильтра - элемент конструкции маслобака. Маслофильтр крепится в корпусе винтом и траверсой. Для слива масла из полости фильтра имеется сливной трубопровод. При засорении фильтрующих секций (сопротивление фильтрующего пакета более 1,8 кгс/см2) масло, минуя фильтропакет, проходит через перепускной клапан.

Теплообменник охлаждает масло топливом, поступающим в основную камеру сгорания.

Охлаждение масла происходит на всех режимах двигателя. Теплообменники охлаждают масло, поступающее к опорам двигателя при более интенсивном их разогреве, происходящем при полете самолета на больших скоростях. Охлаждение масла в теплообменнике производится топливом, питающим форсажную камеру. Включение теплообменника производится по команде от РСФ при включении форсированного режима.

К обечайке приварены кронштейны для крепления теплообменника на двигателе. Холодное топливо через входное телескопическое соединение поступает в полость крышки и, пройдя через трубки сота, отводится через выходное телескопическое соединение из теплообменника.

При повышении сопротивления в топливной полости теплообменника открывается клапан, и часть топлива поступает в двигатель, минуя теплообменник. Горячее масло из нагнетающего насоса через входное телескопическое соединение поступает в межтрубную полость теплообменника и оттуда через выходное телескопическое соединение поступает в двигатель.

При повышении сопротивления в межтрубной полости теплообменника открывается клапан, и часть масла поступает в двигатель, минуя теплообменник.

Топливомасляные теплообменники размещены в верхней части корпуса наружного контура.

Давление открытия обратного клапана не более 0,05 кгс/см2.

Обратный клапан служит для предотвращения попадания масла из ВКА в систему нагнетания двигателя.

Клапан переключения предназначен для подключения теплообменника на форсированных режимах по команде от РСФ.

Клапан установлен на фланце маслобака.

Герметичность полостей клапана обеспечивается уплотнительными кольцами.

Система предназначена для откачки масла в маслобак из опор двигателя, КДА и ВКА.

Система включает: откачивающий насос передней опоры; откачивающий насос задней опоры КНД и передних опор РВД и ТНД; нижний откачивающий насос; откачивающий насос маслоагрегата; откачивающие насосы ВКА; обратные клапаны; перепускной клапан; сигнализатор стружки в масле; магнитную пробку с клапаном; клапан-пробку; неприводной центробежный воздухоотделитель; трубопроводы; дополнительный сливной бачок.

Откачивающий насос передней опоры КНД предназначен для откачки масла из передней опоры КНД, установлен в полости передней опоры. Откачивающий насос - центробежно-шестеренного типа. Насос приводится во вращение валом ротора КНД через гибкий вал; снабжен двумя заборниками с защитными сетками.

Откачивающий насос предназначен для откачки масла из задних опор РВД и ТНД, а также из задней опоры КНД и передних опор РВД и ТНД. Насос приводится во вращение от вала КВД через ЦКП и вертикальную рессору.

Насос снабжен тремя заборниками с защитными сетками.

Нижний откачивающий маслонасос предназначен для откачки масла из задних опор РВД и ТНД, а также из задней опоры КНД и передних опор РВД и ТНД. Насос приводится во вращение от вала КВД через ЦКП и вертикальную рессору.

На верхнем корпусе нижнего откачивающего маслонасоса имеется фланец для подвода масла из системы нагнетания для подпитки насоса маслом на режимах, когда масло из опор откачивается, в основном, насосами, размещены в них.

Откачивающий насос задних опор РВД и ТНД предназначен для откачки масла из опор РВД и ТНД, установлен в полости опор. Откачивающий насос задних опор РВД и ТНД аналогичен по конструкции откачивающему насосу передней опоры КНД. Насос приводится во вращение от вала ТНД через гибкий вал. Насос снабжен двумя заборниками с защитными сетками.

Откачивающий насос маслоагрегата предназначен для откачки масла из КДА, размещен в одном корпусе маслоагрегата с нагнетающим насосом и перепускным клапаном. Масло из КДА поступает в насос через канал, отлитый в корпусе КДА. Внутри канала установлен сетчатый фильтр грубой очистки.

Два откачивающих насоса ВКА - предназначены для откачки масла из ВКА и установлены на корпусе ВКА через рессору. Каждый насос снабжен одним заборником с защитной сеткой.

Обратные клапаны установлены:

в магистрали откачки масла из ГТДЭ;

в магистрали откачки масла из двигателя.

Перепускной клапан предназначен для перепуска масла, откачиваемого из ГТДЭ, при увеличении давления в линии откачки более 0,3(-0,05;-0,10) кгс/см2. Перепуск масла через клапан предотвращает повышение давления в системе откачки из ГТДЭ. Обратный клапан установлен в блоке клапанов.

Магнитная пробка с клапаном предназначена для выявления разрушений и износа омываемых маслом деталей ВКА методом улавливания стальных (ферромагнитных) частиц. Магнитная пробка с клапаном установлена в магистрали откачки масла из ВКА. Пробка установлена в корпус клапана, фиксируется в нем замком байонетного типа и контрится проволокой.

В корпусе клапана имеются три отверстия для подвода масла к магниту пробки. При извлечении пробки эти отверстия перекрываются клапаном, что препятствует вытеканию масла из магистрали. Для обеспечения герметичности соединений по цилиндрической поверхности пробки и под фланец корпуса установлены уплотнительные кольца. Корпус клапана крепится к фланцу корпуса двумя болтами. Осмотр магнитной пробки обеспечивает обнаружение дефектов деталей ВКА и облегчает поиск неисправности двигателя при срабатывании сигнализатора стружки в масле.

Неприводной центробежный воздухоотделитель предназначен для отделения масла, поступающего из магистралей системы откачки, от воздуха. Воздухоотделитель расположен в заливной горловине маслобака. Масловоздушная эмульсия в тангенциальном направлении подводится по трубопроводу к воздухоотделителю, в которую масло, отделяясь от воздуха, стекает в маслобак, а воздух через отверстия воздухоотделителя выходит в верхнюю часть маслобака.

Маслобак сварной конструкции. Заправка маслобака может производиться через штуцер заправки под давлением или, при отсутствии штатного заправщика, через заправочную горловину с крышкой. Маслобак прикреплен к двигателю двумя металлическими лентами.

Топливная система включает: топливную систему низкого давления; основную топливную систему; топливную систему форсажной камеры; систему управления регулируемым реактивным соплом; систему ликвидации помпажа; систему управления поворотными закрылками ВНА КНД и поворотными лопатками НА КВД; систему аварийного слива топлива; дренажную систему

Все гидромеханические агрегаты топливной системы установлены на двигателе

Комплексный регулятор двигателя (КРД) установлен на самолете.

Исполнительные механизмы КРД, установленные на двигателе, приведены в таблице 1.

Управление подачей топлива осуществляется рычагом управления двигателем, электрическими командами и регулятором автоматики

Топливная система низкого давления предназначена для повышения давления топлива, поступающего из топливной системы самолета, его фильтрации, подачи в агрегаты и слива из агрегатов топливной системы двигателя.

В состав системы входят: проставка; топливоподкачивающий центробежный насос; топливный фильтр; трубопроводы; трубопроводы слива.

Основная топливная система предназначена для подачи топлива в основную камеру сгорания и автоматического поддержания заданного режима работы двигателя.

В систему входят: насос-регулятор; распределитель топлива; два датчика температуры «ТДК»; комплексный регулятор двигателя; топливный коллектор первого и второго каскадов с форсунками ОКС; узел управления НР и РСФ от РУД; трубопроводы и электрожгуты; топливный фильтр.

Топливная система форсажной камеры предназначена для подачи и распределения топлива в коллекторы форсажной камеры.

В топливную систему входят: форсажный насос; регулятор сопла и форсажа; распределитель форсажного топлива; воздушный фильтр-редуктор; топливные коллекторы; узел управления НР и РСФ от РУД; трубопроводы и электрожгуты; комплексный регулятор двигателя.

Система управления регулируемым реактивным соплом (РС) предназначена для изменения площади его критического сечения (Fс) в соответствии с законами регулирования РС и режимами работы двигателя.

Система включает: топливный насос высокого давления (НП); топливный фильтр системы управления РС; агрегат управления насосом высокого давления (АУНП); гидроцилиндры РС; обратную связь; регулятор сопла и форсажа (РСФ); пневмоцилиндры; трубопроводы;

Система ликвидации помпажа предназначена для защиты двигателя от помпажа: кратковременным выключением его с одновременным поворотом лопаток НА КВД и ВНА КНД увеличением площади критического сечения реактивного сопла; включением встречного запуска с последующим восстановлением исходного режима работы двигателя.

Система ликвидации помпажа включает: электронный блок противопомпажной защиты БПЗ в КРД; приемник давления воздуха; сигнализатор помпажа (СПТ); исполнительные механизмы в НР;

Система управления поворотными закрылками ВНА КНД и поворотными лопатками НА КВД предназначена для изменения положения:

Закрылков ВНА КНД - по программе;

Лопаток НА КВД - по программе.

Система состоит из: регулятора ВНА КНД; регулятора НА КВД; гидроцилиндров поворота закрылков ВНА КНД; из гидроцилиндров поворота лопаток НА КВД; механической обратной связи ВНА КНД; механической обратной связи НА КВД; трубопроводов; датчиков положения ДП-11, ДС-11В

Система аварийного слива предназначена для слива топлива из баков самолета в полете.

Система включает: агрегат аварийного слива; форсажный насос; трубопроводы; электрические коммуникации.

Дренажная система предназначена для отвода из двигателя топлива и масла, проникающих через уплотнения агрегатов, и для слива остатков топлива из топливной системы и полостей двигателя после его выключения.

Основные эксплуатационные технические данные:

Максимальное давление воздуха в системе противообледенения за агрегатом управления - 5,5 кгс/см2

Максимальная температура воздуха в системе противообледенения - 480С

Система противообледенения двигателя предназначена для обогрева воздухом кока и ВНА КНД. Система включается автоматически по сигналу сигнализатора обледенения или вручную выключателем в кабине.

Система противообледенения включает: агрегат управления; пневматический электромагнитный клапан; воздушный фильтр; сигнализатор обледенения; трубопроводы и электропровода; электрические коммуникации.

При образовании льда на коке, ВНА КНД сигнализатор обледенения или вручную включенная система противообледенения подает электрическую команду на открытие пневматического клапана. Клапан открывает подвод воздуха из коллекторной полости за ВВТ через воздушный фильтр и клапан в бесштоковую полость пневмоцилиндра агрегата управления.

Регулирование расхода воздуха для обогрева происходит в зависимости от температуры воздуха за седьмой ступенью КВД.

При изменении температуры воздуха от 120 до 480С длина термобиметаллической пружины изменяется, что вызывает поворот барабана. Проходная площадь окон стакана изменяется, расход горячего воздуха увеличивается или уменьшается. Окна стакана открыты при температуре воздуха 120С и закрыты при температуре 480С.

При снятии электрической команды с пневматического электромагнитного клапана закрывается проход воздуху к пневмоцилиндру агрегата управления, а бесштоковая полость пневмоцилиндра сообщается с атмосферой. При этом под действием усилия пружины поршень перемещается и поворачивает заслонку, которая закрывает проход воздуху к ВНА КНД и коку. При перемещении поршня влево выключается микровыключеталь и снимает электрический сигнал с бортового регистратора о включении противообледенительной системы.

Автомат запуска двигателя предназначен для автоматического запуска двигателя 99 газотурбинным стартером ГТДЭ-117-1, для управления системами двигателя.

Автомат обеспечивает: запуск двигателя на земле; прокрутку двигателя; прокрутку стартера; запуск двигателя в воздухе (при работающем стартере: автоматический запуск по РУД; дублированный запуск выключателем; встречный запуск двигателя); прекращение процессов запуска, прокрутку двигателя и стартера, подготовку автомата к повторному включению; управление системами двигателя (аварийного слива топлива; прикрытия створок.; изменения темпа сброса частоты вращения двигателя).

Принцип действия автомата заключается в выдаче электрических команд на включение и отключение агрегатов запуска двигателя и стартера по времени или сигналам, поступающим от стартера или от двигателя.

Автомат обеспечивает проведение всех операций по эксплуатации изделия.

Работа

Воздух из самолетного воздухозаборника поступает в КНД. В промежуточном корпусе (за КНД) воздух разделяется на два потока - внутренний и наружный.

Поток воздуха во внутреннем контуре поступает на КВД в основную камеру сгорания, где смешивается с топливом, впрыскиваемым через двухкаскадные форсунки коллектора основной топливной системы. Смесь воспламеняется разрядом полупроводниковых свечей. Топливо, сгорая, повышает температуру смеси. Образовавшийся газ поступает за турбину (ТВД и ТНД), вращающую роторы высокого и низкого давления.

Поток воздуха в наружном контуре обтекает трубчатые модули теплообменника, снижая температуру воздуха, поступающего на охлаждение элементов турбины.

Смешение потоков газа внутреннего контура и воздуха наружного контура происходит в смесителе.

На форсированных режимах в ФК подается топливо, которое, сгорая, повышает энергию газа. Дополнительная энергия реализуется в РС, в результате чего увеличивается тяга двигателя.

Через модернизацию - к новым двигателям

Ситуация на рынке в настоящее время определяет две основные тенденции в создании авиационных двигателей:

  • Поэтапная модернизация существующих двигателей и создание новых на базе имеющихся модулей и узлов. Данный путь позволяет существенно сократить сроки и стоимость разработки нового двигателя, а также снизить технический риск, сохраняя при этом преем ственность поколений. Путем совершенствования одного двигателя можно получить достаточно широкий ряд новых двигателей и обеспечить постепенный переход к новым поколениям, не прерывая цикла "проектирование - производство - продажа".
  • Создание совершенно новых двигателей на базе накопленного научно-технического задела. Здесь, с одной стороны, важно правильно выбрать размерность и основные параметры двигателя, чтобы в дальнейшем на его основе иметь возможность создавать максимально широкий спектр двигателей. С другой стороны, универсальный двигатель (или газогенератор) по техническим характеристикам будет проигрывать двигателю, специально созданному для конкретного применения. Поэтому, учитывая высокую стоимость разработки нового двигателя, необходимо точно найти грань, на которой наиболее оптимально сочетаются весьма противоречивые требования к создаваемому ГТД.

Принимая во внимание ограниченные возможности государства по финансированию отрасли, на ФГУП "ММПП "Салют" разработана концепция модернизации выпускаемого серийно двигателя АЛ-31Ф. Эта концепция базируется на следующих основных положениях:

Этапы модернизации двигателя АЛ-31Ф

Первый этап


Тяга R ф =13300 кгс


Второй этап


Тяга R ф =14100 кгс


Третий этап


Тяга R ф =14600 кгс

  1. Модернизация АЛ-31Ф имеет целью повышение тяговоэкономических характеристик, надежности и ресурса путем поэтапного внедрения в серийную конструкцию двигателя прогрессивных проектных и конструкторско-технологических решений. Основным тенденциям в развитии современной авиации (утяжеление летательных аппаратов (ЛА), увеличение дальности и высоты полета, манёвренности и вместе с тем снижение стоимости производства и эксплуатации) соответствует использование именно модернизированного двигателя, базирующегося на отработанной конструкции и обеспечивающего выполнение изложенных выше задач без прекращения использования существующего парка ЛА.
  2. Реализация комплекса работ (разработка, доводка, серийная поставка, эксплуатация и ремонт) под единым руководством позволяет решать возникающие на каждом этапе проблемы в минимальные сроки. Объединение на предприятии под единым началом всех работ - перспективных разработок, доводки, производства, серийно го сопровождения, обслуживания и ремонта - делают ФГУП "ММПП "Салют" единственным и полностью ответственным за создание модернизированного двигателя. В связи с этим на предприятии в дополнение к ранее существовавшим технологическим службам, роль которых также возросла, было создано конструкторское бюро перспективных разработок (КБПР).
    В настоящее время КБПР укомплектовано квалифицированными специалистами и плодотворно работает. Оснащение рабочих мест современными средствами вычислительной техники, объединенными в единую информационную сеть, позволяет вести комплексное автоматизированное проектирование с помощью новейших методов моделирования и расчеты двигателя в целом, его отдельных узлов и деталей. Современные компьютерные технологии применяются для проведения тепловых и прочностных расчетов, расчетов газодинамики и горения, для трехмерного моделирования и подготовки конструкторской документации.
  3. Проблема создания научно-технического и технологического заделов на одном предприятии, обладающем высокой технологической культурой и определенными финансовыми возможностями, может быть решена при значительно меньших затратах со стороны государства. Негативным примером в этом отношении может служить история создания одного из двигателей 5-го поколения, так и не доведенного в свое время из-за наличия указанных проблем.
    Современный двигатель - сложнейшая в конструктивном и технологическом отношениях техническая система. Конструкция двигателя, технологические процессы, обеспечивающие его работоспособность и высокую экономическую эффективность производства, должны соответствовать требованиям мирового уровня. Поэтому из современных технологий на "Салюте" выбирают те, которые наиболее рациональны с технической и экономической точек зрения. Управляющие программы для такого оборудования разрабатываются специалистами предприятия и за рубежом. Наряду с использованием закупаемых программ мы ведем разработку собственных специализированных процессоров для программирования обработки деталей турбомашин. Производство на ФГУП "ММПП "Салют" сертифицировано. Завод имеет вес необходимые российские и международные сертификаты системы качества, а также лицензию на проектирование газотурбинных двигателей. Последовательного улучшения основных параметров двигателя мы намерены достичь путем проведения трех этапов модернизации. Перед каждым из них реализуется определенный объем экспериментально-проектных и конструкторских работ, а также перечень критических технологий, обеспечивающих внедрение модернизированных агрегатов. При этом предполагается, что двигатели каждого этапа модернизации будут выпускаться серийно, взаимозаменяемы между собой на ЛА и иметь улучшенные характеристики но сравнению с предыдущими. Улучшение характеристик с обеспечением взаимозаменяемости достигается следующим образом.

На I этапе модернизации (двигатель АЛ-31Ф-М1):

  • устанавливается КПД с увеличенным расходом воздуха
  • температура газов Т3 перед турбиной увеличивается на 25 o , допустимость чего подтверждена необходимыми тепловыми расчетами турбины
  • аналоговый регулятор работ ы двигателя заменяется па цифровой
  • используется турбостартер с повышенными на 15-20% мощностью и до 3500 м высотностью запуска.

Тяга двигателя при этом возрастает на 800 кгс по сравнению с 12500 кгс базового АЛ-31Ф. Двигатель I этапа модернизации успешно прошел стендовые и летные испытания. Ведется подготовка производства для его внедрения в серию.

На II этапе модернизации (двигатель АЛ-31Ф-М2) в дополнение к предыдущим:

  • применяются высокотемпературные модернизированные турбины ТВД и ТНД с лопатками пространственного профилирования. Для двигателей АЛ-31Ф-М2, АЛ-31Ф-МЗ разработан литейный вариант рабочей лопатки (РЛ) многоходовой продольно-поперечной схемы охлаждения с перфорацией входной кромки. Здесь охлаждающий воздух поступает в район входной кромки, где частично выдувается на профиль, а частично через горизонтальные (поперечные) каналы подается в район выходной кромки, где выбрасывается в проточную часть. Данная конструкция РЛ позволяет получить равномерно нагретое перо лопатки с минимальными температурными напряжениями. Температура газов увеличивается ещё на 75 o
  • используется вновь разработанная перспективная камера сгорания (КС) с двухстеночной жаровой трубой. При этом обеспечиваются организация горения с высокой полнотой сгорания, надежный запуск КС без применения кислорода, уменьшенная окружная неравномерность поля температур на выходе из КС, увеличенный ресурс КС при существенном уменьшении расхода хлаждающего воздуха
  • устанавливается электронно-цифровая САУ с полной ответственностью и гидромеханическим резервированием.

Тяга двигателя увеличивается до 14100 кгс.

Трёхступенчатый компрессор
низкого давления АЛ-31Ф-М3

На III этапе модернизации (двигатель АЛ-31Ф-МЗ) дополнительно устанавливается новый трёхступенчатый КНД с широкохордными лопатками пространственного профилирования и повышенной степенью сжатия до p k = 4.2, что позволяет увеличить тягу до 14600 кгс.

На любом этапе модернизации на двигатель может быть установлено всеракурсное поворотное сопло, проходящее в настоящее время длительные испытания. Реализация трех этапов позволит обеспечить создание двигателя, обладающего характеристиками поколения 4+. Опробованные в процессе модернизации новые конструкторские и технологические решения при их дальнейшем развитии могут быть взячы за основу при разработке перспективных двигателей.


Технические характеристики:

Длина, мм 4945

Максимальный диаметр, мм 910

Высота, мм 1240

Масса, кг 1530

Удельный расход топлива, кг/Н ч:

на форсажном режиме 1,96

на максимальном режиме 0,75

на крейсерском режиме 0,66

Расход воздуха через компрессор, кг/с 112

Степень повышения давления в компрессоре 12,7

Температура газа перед турбиной, °C 1387

Тяга, кгс:

максимальная бесфорсажная 7850

на форсаже 12500

Двигатель АЛ-31Ф предназначен для установки на самолетах Су-27 и его модификациях (Су-27СК, Су-30МК, Су-32МФ).

Модификации:

АЛ-31К — двигатель для палубного самолёта Су-33. Тяга на форсаже увеличена до 13300 кгс. Отличается дополнительной антикоррозионной защитой.

АЛ-31СТ — двигатель для газоперекачивающих станций.

АЛ-31Ф — базовый. Устанавливается на Су-27, Су-27УБ, Су-30, Су-34, Су-35.

АЛ-31ФM1 — модернизированный. Тяга на форсаже увеличена до 13500 кгс.

АЛ-31ФM2 — форсированный до 14000 кгс. Отличается трёхступенчатым компрессором низкого давления.

АЛ-31ФM3 — форсированный.

АЛ-31ФН — с нижним расположение коробки приводов. Разработан по заказу Китая.

АЛ-31ФП (АЛ-31ФУ) — с поворотным соплом. Разработан в 1988-1994 годах. Масса увеличена на 110 кг, длина — на 0,4 м. Устанавливался на Су-33УБ, Су-37.

Серийно производился с 1981 года на заводе № 165 в Москве (Московское МПП «Салют») и на УМПО (г. Уфа)

Разрабатывался с первой половины 1970-х годов в ОКБ им. А.М. Люльки. В настоящее время ОКБ им. Люльки является частью НПО «Сатурн».

История создания и особенности конструкции:

Турбореактивный двигатель АЛ-31Ф («изделие 99») разработан в 70-х годах на Московском машиностроительном производственном предприятии "Салют" под руководством генерального конструктора В.М.Чепкина для самолёта Су-27 и его модификаций. (После смерти А. М. Люльки в 1984 году работы по двигателю и его модификациям возглавил генеральный конструктор В. М. Чепкин).Серийное производство организовано в 1981 году на Уфимском машиностроительном производственном объединении и ММПП «Салют».

АЛ-31Ф представляет собой двухвальный двухконтурный турбореактивный двигатель со смещением потоков за турбиной. Двигатель имеет модульную конструкцию. Он состоит из 4-ступенчатого компрессора низкого давления с регулируемым входным направляющим аппаратом, промежуточного корпуса с центральной коробкой приводов, 10-ступенчатого компрессора высокого давления с регулируемой первой группой ступеней, наружного контура, кольцевой камеры сгорания, одноступенчатой охлаждаемой турбины высокого давления, одноступенчатой охлаждаемой турбины низкого давления, форсажной камеры и сверхзвукового реактивного сопла. Двигатель имеет верхнее расположение агрегатов. Маслосистема замкнутая. Запуск осуществляется от воздушного стартера. Двигатель работает на авиационном керосине марок Т-1, ТС-1, РТ.

Поставлялся на экспорт в Индию и Китай. Капитальный ремонт осуществляется на авиаремонтном заводе №121 в Кубинке.

Турбореактивный авиационный двигатель АЛ-31Ф.

Разработчик: НПО «Сатурн» (под руководством А.М.Люльки)
Страна: СССР
Испытания: 1977 г.
Серийное производство: 1981 г.

АЛ-31Ф («изделие 99») — базовый двигатель серии авиационных высокотемпературных турбореактивных двухконтурных двигателей с форсажными камерами. Разработан под руководством А.М.Люльки в НПО «Сатурн». Проектирование двигателя началось в 1973 году, первые испытания прошли в 1977 году, государственные испытания завершились в 1985 году. С 1981 года двигатели АЛ-31 производятся на УМПО (г. Уфа) и «ММПП Салют» (г. Москва). После смерти А.М.Люльки в 1984 году работы по двигателю и его модификациям возглавил генеральный конструктор В.М.Чепкин. В настоящее время ОКБ им. Люльки (г. Москва) является частью УМПО.

АЛ-31Ф — базовый двухконтурный двухвальный турбореактивный двигатель со смешением потоков внутреннего и наружного контуров за турбиной, общей для обоих контуров форсажной камерой и регулируемым сверхзвуковым всережимным реактивным соплом. Двигатель модульный.

Состоит из компрессора низкого давления осевого 4-ступенчатого, с регулируемым входным направляющим аппаратом (ВНА), компрессора высокого давления, осевого 9-ступенчатого, с регулируемым ВНА и направляющими аппаратами первых двух ступеней, турбины высокого и низкого давления — осевые одноступенчатые; лопатки турбин и сопловых аппаратов охлаждаемые (пленочное охлаждение). Основная камера сгорания кольцевая.

В конструкции двигателя широко применяются титановые сплавы (до 35 % массы) и жаропрочные стали. Лопатки турбин имеют полости в виде лабиринтов, для охлаждения газы подаются из диска в лопатку и проходят через отверстия по кромкам (пленочное воздушное охлаждение), для крепления лопатки к диску используется хвостовик ёлочного типа. После турбины установлен 11-лепестковый смеситель. Для обеспечения стабильной работы ФК, установлен затурбинный кок, плавно переводящий поток, из кольцевого в круглое сечение, с антивибрационными отверстиями, а также в форсажной камере установлены антивибрационные продольные экраны.

Двигатель имеет электрическую систему зажигания. Пусковая система может запускать двигатель как на земле, так и в полёте. Для запуска двигателя на земле используется пусковое устройство расположенное в выносной коробке двигателя. На обычных режимах работы двигателя для экономии топлива охлаждение турбин частично отключается.

Применение регулируемых ВНА КНД и КВД дает более высокую устойчивость к помпажу, на практике это означало что двигатели сохранят работоспособность при попадании самолета в штопор и при пуске ракет. Двигатель в полёте может использоваться на всех режимах без ограничений. Время приемистости из режима малого газа до режима «максимал» на малой высоте 3-5 с, на средней 5 с, на большой высоте 8 с. Максимальная частота вращения 13 300 об./мин.

Двигатель работает на авиационном керосине марок Т-1, ТС-1, РТ.

Поставлялся на экспорт в Индию и Китай. Капитальный ремонт осуществляется на авиаремонтном заводе № 121 в Кубинке.

Модификации:
АЛ-31Ф — базовый. Устанавливается на Су-27 , Су-27УБ , Су-30 , Су-34 , Су-35 . Первоначально назначенный ресурс серийных АЛ-31Ф составлял всего 100 часов, при требовании ВВС в 300 часов, но затем со временем он был доведён до 1500 часов.

АЛ-31К — двигатель для палубного самолёта Су-33 . Тяга на форсаже увеличена до 13300 кгс. Отличается дополнительной антикоррозионной защитой.

АЛ-31ФM1 — модернизированный. Тяга на форсаже увеличена до 13500 кгс. С четырехступенчатым компрессором низкого давления КНД-924-4 с увеличенным с 905 до 924 мм диаметром, обеспечивающим на 6 % больший расход воздуха, а также более совершенной цифровой системой автоматического управления (степень сжатия 3,6). Температура газов перед турбиной у этого двигателя повышена на 25°С. Двигатель двухконтурный, первый контур проходит через «рубашку» для охлаждения, затем смешивается за турбиной с горячим вторым контуром двухвальный. Серийно производится с 2006 года для истребителей семейства Су-27, устанавливается без доработок в любые истребители, в том числе ранних годов выпуска, установлены на 1 полку Су-27СМ/СМ2 и уже устанавливаются на производимые Су-34.

АЛ-31ФM2 — форсированный до 14000 кгс. Отличается трёхступенчатым компрессором низкого давления. Назначенный ресурс модернизированного двигателя превышает 3 000 часов. Не требует доработки борта самолета при постановке на самолеты типа Су-27, Су-30, Су-34, в отличие от двигателей других серий.

АЛ-31ФM3 — форсированный. 3-й этап модернизации АЛ-31Ф ММПП Салют, дополнительно устанавливается новый трёхступенчатый КНД с широкохордными лопатками пространственного профилирования и увеличенной степенью повышения давления до 4.2 (КНД-924-3), что позволяет увеличить тягу до 15 300 кгс (получено на статических испытаниях). Лопатки и диск 3-х ступенчатого КНД представляют собой единое целое (блиск), вместо 9 ступеней КВД планируется уменьшить число до 6.

АЛ-31ФП (АЛ-31ФУ) — с поворотным соплом. Разработан в 1988-1994 годах. Масса увеличена на 110 кг, длина — на 0,4 м. Устанавливался на Су-33КУБ , Су-37 . Основное отличие от базового двигателя АЛ-31Ф — управляемый вектор тяги, значительно повышающий маневренные характеристики самолета. Изменение вектора возможно на угол до ±16° в вертикальной плоскости и до ±15 в любом направлении.»ФП» означает форсажный поворотный. Двигатель разработан в НПО Сатурн, прозводится на УМПО. Двигатели АЛ-31ФП устанавливаются на истребители поколения 4++ — Су-35.

Р-32 — форсированный двигатель АЛ-31Ф для рекордного самолета П-42 , созданного на базе Су-27. Форсажная тяга двигателя была повышена до 13600 кгс.

АЛ-31ФН — с нижним расположение коробки приводов. Разработан по заказу Китая.

Двигатель АЛ-31ФП.

.
Список источников:
Крылья Родины. № 8 за 1999 г. Уфимские моторы.
Журнал «Двигатель». № 3 за 2000 г. В.М.Чепкин. Шедевр двадцатого века.
Фотоархив сайта russianplanes.net

Вечный двигатель российского военного авиапрома

Созданный более сорока лет назад для истребителя четвертого поколения двигатель АЛ-31Ф до сих пор соответствует по техническим параметрам лучшим образцам в своем классе. Технологический резерв, заложенный в этот авиамотор, позволяет проводить постоянную его модернизацию. Семейство АЛ-31Ф стало символом стабильности отечественного моторостроения. Наработки, накопленные при создании этого модельного ряда, используются для разработки принципиально нового двигателя истребителя пятого поколения, который будет иметь еще более высокую тягу и меньший удельный вес.

Свой первый зарубежный визит на посту министра обороны генерал армии Сергей Шойгу совершенно закономерно совершил в Китайскую Народную Республику. Военно-техническое сотрудничество (ВТС) России и Китая, чрезвычайно активное в конце ХХ и серьезно стагнировавшее в начале ХХI века, вновь обрело второе дыхание в последние два года. В основе новой фазы российско-китайского ВТС – поставки авиационных двигателей прежде всего семейства АЛ-31Ф. В разрушительные для всего российского оборонно-промышленного комплекса (ОПК) 90-е годы именно они во многом обеспечили коммерческий успех за рубежом многофункциональных истребителей линейки Су-27/Су-30 и таким образом спасли не только отечественный военный авиапром, но и моторостроительную отрасль в целом. Сегодня разработчики АЛ-31Ф используют весь накопленный опыт и наработки для создания принципиально нового двигателя истребителя пятого поколения Т-50 (ПАК ФА – перспективный авиационный комплекс фронтовой авиации).

Для превосходства над F-15

Двигатель АЛ-31Ф разработки московского машиностроительного завода «Сатурн» (ныне ОАО «А. Люлька-Сатурн», с 2001 года входит в состав ОАО «НПО «Сатурн») был выбран в качестве основного для будущего истребителя четвертого поколения Су-27, главной задачей которого было добиться превосходства над своим американским аналогом – F-15. Решение о его создании принято в 1971 году. Соответствующее заключение Центрального института авиационного моторостроения (ЦИАМ) было сделано по результатам анализа работы трех двигателей – АЛ-31Ф, Д-30Ф-9 и Р-59Ф-300.

Опытный самолет проекта под названием Т-10-1 проходил испытания с 20 мая 1977 года. До 1982-го для этого было построено девять таких машин с двигателями предыдущего поколения – АЛ-21Ф-3.

Разработка перспективного авиамотора велась с 1974 года. Но характеристики первоначального варианта АЛ-31Ф (с двухступенчатыми турбинами высокого и низкого давления и низконагруженными компрессорами) не отвечали тактико-техническому заданию. Новый турбореактивный двухконтурный двигатель создавался с форсажной камерой одновременно вместе с полным перепроектированием конструкции самолета. Фактически заново разработанный Московским машиностроительным заводом имени П. О. Сухого истребитель Т-10С имел, помимо всего прочего, значительно улучшенные аэродинамические качества и другую компоновку авиамотора (коробка приводов и все агрегаты в верхней части). 6 августа 1985 года был подписан акт о приемке государственных испытаний АЛ-31Ф. Новый двигатель тягой 12,5 тонны имел одноступенчатые турбины высокого и низкого давления и высоконагруженные компрессоры. Одним из ключевых моментов стало создание и внедрение ОАО «А. Люлька-Сатурн» лопатки турбины циклонно-вихревой системы, что сделало мотор ресурсным, до этого он мог эксплуатироваться не более 70 часов. Работа над продлением ресурса стала одним из главных направлений. Тогда требования советских ВВС ограничивались 300 часами. В настоящее время этот показатель двигателя достиг тысячи часов.

Основным производителем АЛ-31Ф было определено ОАО «Уфимское моторостроительное производственное объединение» (УМПО). Затем к программе было привлечено московское машиностроительное производственное предприятие «Салют» (сейчас ФГУП «НПЦ газотурбостроения «Салют»), которое сначала занималось изготовлением отдельных элементов двигателя. Со временем сложилось своеобразное разделение труда, согласно которому УМПО (ведущее по тематике) специализировалось на производстве элементов холодной части мотора, а «Салют» – горячей. При этом сборка велась на обоих предприятиях.

Управляемый вектор

Двигатель АЛ-31ФП с поворотным соплом впервые был испытан в 1989 году. В апреле 1996-го экспериментальный образец истребителя Су-35 поднялся в воздух с прототипом этого мотора с управляемым вектором тяги (УВТ). В ходе работы над этим агрегатом особое внимание уделялось эффективному управлению соплом, сложная задача была решена при создании надежного уплотненного сочленения его подвижной и неподвижной частей. Представленный в итоге двигатель обеспечил всемирно известную маневренность и надежность в управлении тяжелых истребителей «Сухого». Серийный АЛ-31ФП установлен на Су-30. Первый зарубежный контракт на самолеты с этими моторами выполнили уфимцы, обеспечив поставку в Индию 40 Су-30МКИ (80 двигателей) по соглашению 1996 года.

В течение 90-х годов производители АЛ-31Ф с помощью неформальных договоренностей поделили рынки: моторы для индийских самолетов изготавливало УМПО, для экспорта в Китай – «Салют». Что касается других зарубежных заказчиков, то Алжир и Малайзия получили истребители Су-30 с уфимскими моторами, Вьетнам и Индонезия – с московскими. Венесуэльский же контракт на 24 Су-30MKV2 заводы поделили ровно пополам.

Китайский контракт

События на площади Тяньаньмэнь в июне 1989 года «поставили крест» на поставках западных вооружений и военной техники в Китай. Из-за эмбарго под угрозой срыва оказалась китайская программа по созданию национального легкого однодвигательного самолета J-10. Машина создавалась на основе тактического истребителя Lavi израильской компании Israel Aerospace Industries. Проект был закрыт под давлением США в 1986 году в пользу F-16, но его наработки использовались израильтянами в совместных зарубежных программах.

Китайские J-10 должны были оснащаться специально разрабатывавшимся для них двигателем PW-1120 американской компании Pratt&Whitney. Но после введения эмбарго об этом можно было забыть. В качестве альтернативного варианта верховное командование Народно-освободительной армии Китая выбрало модификацию российского АЛ-31Ф с нижним расположением агрегатов – АЛ-31ФН.

Разработку первых 14 двигателей для китайского проекта выполнило ОАО «А. Люлька-Сатурн» в 1992–1994 годах на деньги заказчика – первый прецедент в постсоветского ОПК России. Серийным изготовителем АЛ-31ФН Российское авиационно-космическое агентство выбрало московский завод «Салют».

Спор вокруг роялти

«Сатурн» заключил с УМПО и «Салютом» лицензионные соглашения о денежной компенсации (роялти) ему как разработчику, согласно которому он получает восемь процентов от стоимости каждого проданного двигателя – около 250–300 тысяч долларов. Его цена со временем выросла с 2,5 до 3,5 миллиона долларов. В случае с АЛ-31ФН руководство «Салюта», получив по соглашению неполную техническую документацию на двигатель, решило доработать ее до уровня серийного производства. Более того, генеральный директор предприятия Юрий Елисеев заключил в 1999 году лицензионный договор с Федеральным агентством по правовой защите результатов интеллектуальной деятельности военного, специального и двойного назначения, переписав фактически права на изготовление двигателя на «Салют» и нивелировав таким образом соглашение с «Сатурном», который получает роялти только от УМПО.

Ключевой элемент

Экспортная динамика семейства АЛ-31Ф давно приобрела самостоятельный (от поставок боевых самолетов) характер. Особенно это заметно в контексте российско-китайского ВТС. АЛ-31ФН стал своеобразной лакмусовой бумажкой оценки состояния двигателестроения Поднебесной. Если по большинству направлений китайский ОПК постоянно демонстрирует серьезные успехи, то на двигателестроительном фронте китайцы пока не в состоянии наладить серийное производство надежного мотора для боевого самолета.

Именно поэтому КНР продолжает до сих пор закупки двигателей серии АЛ-31Ф для легких J-10, а также для тяжелого J-11B/BS (копия российского истребителя Су-27). В 1996 году Китай приобрел лицензию на производство 200 самолетов Су-27СК без права реэкспорта в третьи страны. К концу 2007-го было собрано 105 из них. Затем Пекин отказался от дальнейшей реализации этой лицензионной программы, создав свой клон – J-11.

Российские двигатели закупаются КНР при формальном наличии широко разрекламированного отечественного турбореактивного двухконтурного WS-10A Taihang, разработанного специально для J-10 и J-11. Но этот мотор характеризуется невысоким ресурсом и большим количеством конструктивных и технологических недостатков, которые до сих пор не удалось устранить. По официальным данным, серийное производство Taihang должно быть развернуто до конца 2015 года, однако эти сроки представляются излишне оптимистичными.

Попытки Китая преодолеть «двигательную зависимость» от России пока провалились. В 2009 году КНР возобновила закупки моторов АЛ-31Ф/ФН. Причем рост китайских заказов настолько высокий, что ФГУП «НПЦ газотурбостроения «Салют» едва хватает производственных мощностей – в 2009–2011 годах законтрактовано почти 400 единиц (весь объем заказов и поставок приближается к тысяче). Еще 140 АЛ-31ФН должно поставить УМПО по контракту 2011-го для замены выработавших ресурс двигателей многофункциональных истребителей J-11 (Су-27/Су-30MKK/MK2).

Силовые характеристики улучшаются

По словам генерального директора ФГУП «НПЦ газотурбостроения «Салют» Владислава Масалова, силовые характеристики АЛ-31Ф уже не вполне удовлетворяют параметрам техзаданий для самолетов семейства Су, которые должны поступать на вооружение Военно-воздушных сил России. Речь идет прежде всего о новых серийных фронтовых бомбардировщиках Су-34 и глубоко модернизированных многофункциональных истребителях Су-27СМ. Тяга созданной «Салютом» более мощной версии двигателя АЛ-31Ф-М1 (42-я серия) увеличена до 13,5 тонны без изменения габаритных размеров. Этот мотор уже поставляется серийно для Су-27СМ. Кроме того, он будет использован для ремоторизации Су-27, Су-30, а также, возможно, для 19 остающихся в строю корабельных истребителей Су-33 авиагруппировки тяжелого авианесущего крейсера «Адмирал Кузнецов».

Следующий этап – АЛ-31Ф-М2, который планируется запустить в серийное производство в следующем году. По результатам испытаний в ЦИАМ подтверждена возможность увеличения максимальной тяги до 14,5 тонны при снижении удельных расходов топлива, в том числе на бесфорсажных режимах. Назначенный ресурс – три тысячи часов. Его установка не потребует никаких доработок в конструкции планера или мотогондолы двигателя Су-27СМ или Су-34 и может быть проведена непосредственно в войсках.

Двигатель для ПАК ФА

После долгих дискуссий и борьбы за право быть головным разработчиком двигателя для ПАК ФА решением руководства страны этот мотор создается в рамках Объединенной двигателестроительной корпорации (ОДК) с распределением зон ответственности. «Салют», не входящий в корпорацию, является соисполнителем ОДК.

Два главных конкурента разрабатывали свои параллельные прототипы двигателя для истребителя пятого поколения – «Енисейск-А» вел «Сатурн», «Енисейск-Б» – «Салют». Окончательный победитель официально объявлен не был.

Пока же опытные образцы Т-50 проходят испытания на АЛ-41Ф1 – «изделии 117» совместной разработки ОАО «НПО «Сатурн», ОАО «УМПО» и ОАО «ОКБ Сухого». В его основе все тот же АЛ-31Ф. Некоторые элементы заимствованы из наработок по созданию «изделия 117С» (АЛ-41Ф1С) для истребителя поколения «4++» Су-35. Тяга мотора «117» первого этапа для ПАК ФА достигает 15 тонн, у него турбина с увеличенным диаметром, всеракурсное управление вектором тяги, цифровая система автоматического управления. Полноценный двигатель пятого поколения будет иметь более высокую тягу и меньший удельный вес. Точные параметры, как и собственно сам процесс разработки, держатся в секрете. Во всяком случае, по официальным заявлениям, «Салют» и «Сатурн» работают над проектом в тесном контакте.